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ON A METHOD OF 
OF 

A scheme for a method of solving a certain integral equation is proposed 

SOLVING INTEGRAL EQUATIONS AND ITS APPLICATION TO THE PROBLEM 
THE BENDING OF A PLATE WITH A CRUCIFORM INCLUSION* 

O.V. ONISHCHUK 

consisting of the construction of a system of solutions of the character- 
istic equation with a complete system of special right-hand sides (poly- 
nomials, say) and writing the approximate solution of the initial equation 
in the form of a linear combination of the functions constructed. The 
scheme is realized in the case when the characteristic equation is reduced 
to a Mellin convolution and is solved exactly by the factorization method 
using the Mellin transform. In particular, such an approach provides an 
efficient solution of an integral equation with a fixed singularity in the 
kernel. A system of two integral equations obtained in the problem of 
the bending of a rectangular plate with a cruciform inclusion is solved 
as an illustration. In the case of branches of the inclusion of identical 
length the system is solved by the ordinary factorization method, in the 
case of branches of the inclusion of different length the factorization 
method is modified substantially. 

1. The general scheme of the method of basis right-hand sides. We consider 
an integral equation of the form 

s (L(~,T)+II(t,z))cp(t)dz-~f(~)=O (O,<t,<Q (1.1) 
0 

where t&r) is the characteristic part of the kernel that includes all the singularities 
existing in the kernel and K(~,T) is the regular part of the kernel. It is assumed that 
for the characteristic equation 

an exact solution can be constructed. The properties of the functions Cp (r) and go(r) (the 
arrangemsnt and nature of the singularities) are- in agreement here. 

Assuming that the functions K ($7 r) and f(t) in (1.1) are sufficiently smooth and 
approximated well by polynomials, and following /l/ (p.9) we consider a system of functions 

%l*tr? that are solutions of the equations 

(for certain kernels A(&%) the range of variation of m can be narrowed, see Sect.3). We 
construct the function (/2/, p.40) 

(1.4) 

for which 

1 L&r) 51 I 0 L h4 
nn*(T)dT=un*pn~(t) (O<t& f,n- O,*,Z,...) 

and the biorthogonality conditions are satisfied 

(1.5) 
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ipn*(t)nm*(t)dt=N *8 n mn 
0 

Formulas (1.5) and (1.6) enable us to write the exact 
form (analogous to /l/, p.7) 

(1.6) 

solution of (1.2) in the following 

0.7) 

and also enable us to use a method analogous to the method of orthogonal polynomials /l, 2/ 
for the approximate solution of (1.1): 

a) write the desired function in the form 

v(r) =i@.nbW l(1.8) 

b) determine @,, from the condition of the orthogonality of the left-hand side of (1.1) 
to the functions n, (t): 

N,-a,,,+~&, +,A d&l’, = F,,, (m = 0, 1, . . . , N) il.9 

~.=~SK(t,.~)nd(.r)nX(t)drdt, F,=\f(t)q,,-(t)dt 
00 0 

The function (1.8) can also be written in the form 

cp(z) =~&fQJ.+(r) ,(1.10) 

by determining (P,, from the condition of orthogonality of the left-hand side of (1.1) to the 
functions 9,(t) 

&z,.~+bmn)cp.=f, (m=O,k...,N) 

a..=! t”e,,,-(t)dt, fm=if(t)Q,,-(t)dt 
Cl Cl 

b,,,.=~~K(t,r)O~+(+/(t)drdt 
00 

(1.11) 

Utilizing (1.10) and (1.11) in place of (1.8) and (1.9) enables us to dispense with the 
tedious construction of the biorthogonal systems (1.4) in the general case. 

If the characteristic part of the matrix-kernel is diagonal 

Si Lz (t, 7)%(z) + ; &(W(P+))+ fa(t)=O q(1.12) 
0 84 
(0 < t < 1, a = 1, 2, . . .) M) 

then we have in place of (1.X), (1.10) and (1.11) 

41.13) 

il 2 (aaenn + baorsmn) wtn = foLm 

(a=&2 ,..., iM;m=O,l,..., N) 

aaetnn = &B i t”%&, (t) dt, fam =I foL (t) Km (t) dt 
0 0 
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For a system of general form 

we obtain the following scheme 

(1.14) 

(1.45) 

(i.iS) 

System (1.16) in 'pi,, is obtained from the condition of the orthogonalityoftheresidual 

vector II 4(t), W), . . ., ddUl on the left-hand side of (1.14) to the vectors II 6k (0, 6;=, (0, 
. . .( ek., (oil: 

ii dl(~)eiamt(4~=0 

(a=&2 ,..., M;m=O,i ,..., N) 

The realizability of the scheme described is determined completely by the possibility of 
constructing the functions ef (T) in (1.3) in a form enabling unnr b, and f, in (1.11) to 
be evaluated. This is done especially easily if the integral operators in (1.3) are Mellin 
convolutions 

s 0 g* + e&T)-+P (Ogt<i) (1.17) 
0 

(or are reduced to such a form by using differentiation, say). Eqs.Cl.17) can be solved by 
the factorization method (see below) whereupon the Mellin transforms are found 

(1.18) 

and by the inversion formula, the functions e(T) themselves. 
By virtue of (1.11) and (1.18) a,,=v,(n -k 1). If the functions If(t,T) and f(t) are 

here expanded in power series 

f(e&tk. K(t, T) =ki j+.,tkT' 

(in the general case in polynomial series), we obtain the following simple expressions: 

(i.19) 

(1.20) 
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The method described can be applied efficiently to equations with a fixed singularity in 
the kernel (for t=r = 0) which is obtained, in particular, in two-dimensional problems of 
elasticity theory with intersecting (branching) linear defects and linear defects emerging on 
the domain boundary /2-lo/. 

An investigation of such equations is carried out in /II/. In this case the main dif- 
ficulty in solving (1.1) is associated with the complication in the behaviour of the function 

cp (r) as z-0, which will be of the type r-', as a rule, where y is the root of a certain 
transcendental equation C(v)= 0. Consequently, the desired function is written in the form 
cp(r) = P (f -t)" 'PO (r), in /2-5/, where a= --yO, ya is the root of the equation G(y)= 0 from a 
certain strip determined from the mechanical meaning of the problem. The function PO (z) is 
approximated by polynomials or splines. 

This method is fairly awkward even in the case of real y0 
evaluating the integral 

'( S .t @,T) + K (t, TN ~~(1 - d%W dr 0 

because of the difficulty of 

(1.21) 

In the case of the presence of two complex-conjugate roots in the equation G(y)= 0 the 
difficulties increase significantly. Moreover, the roots ok of the equation C(y)= 0 with 

Re-tk<Reb, exert an influence on the smoothness of the function Q('I) and the efficiency of 
its approximation by polynomials. In order to simplify the algorithm, CL=OL,, is taken in 
/6-lo/, the closest integer or half-integer to the right of Y 0, which enables simple quadrature 
formulas to be used to calculate (1.21). In substance, the same simplification is made in 
/12, 13/ also, where the approximate form of the mapping function results in smoothing out the 
angular points on the domain boundary when conformal mappings are utilized. 

Ijeing sufficiently simple algorithmically (see (1.11) and (1.20)), the proposed method 
simultaneously takes account of the behaviour of the desired function as z-+0 most accur- 
ately since wehave Yu,+(p) = R, (p)IG(p)I-' in (1.18) for Rep,< ReYo, and by the inversion 
formula 

i.e., a11 the roots of the equation G(y)= 0 with Rey< Rey, are taken into account. Both 
these facts, as well as the new solution obtained below for the problem of the bending of a 
rectangular plate with a cruciform inclusion indicate the efficiency of the method. 

We note that difficulties with the presence of non-integrable singularities of the contact 
forces as z-+1 (analogous singularities are obtained in /2, 14-17/ in problems of the 
bending of plates with linear inclusions (in the form of line segments) must be overcome in 
the solution of the problem mentioned. 

2. The problemof the bending of a rectangular plate with a cruciform in- 
elusion. We consider a rectangular (1~ I< a, = a/2, Iy 1 Q b, = b/2) hinge-supported plate 
within which there is a thin absolutely rigid inclusion subjected to an applied force P of 
magnitude W. at the segments y = 0, 1s ) Q cl = c/2 and x = 0, Iy 1 <d, = d/2. 

The problem is formulated as follows; Find the deflection 
equation and boundary Conditions 

DA% = q (5, Y) (I r I < a,, IY I < 4) 
W=M,=O(lsI=a,, I Y I < W’ 
~=~,=O(lyI=b,, Irl<a,) 

of a plate satisfying 

as well as the conditions on the inclusion 

w= w, (Y = 0, lx IQCl 

WY ’ = 0 (Y = 0, 15 I Q 4, 

The function w(z,y) is obviously even in 
We reduce problem (2.1)-(2.4) to a system 

and r = 0, I Y I < 4) 

4 ’ = 0 (5 = 0, I Y I < 4) 

x and y. 
of integral equations. To do this I 

as in /2, 1%17/, from the fact that the presence of the inclusion causes a jump 
transverse forces 

%(E) = v, (E. -0) - v, (5, -tO), *n (rl) = V,(-0, q) - V,(-tO, rl) 

the functions lpl, qpI are even, $1 (E) = 0 for cl< I& I<cr,, q,(q)= 0 for dr( I 

the 

(2.0 
(2.2) 

(2.3) 

(2.4) 

we start, 
in the 

(2.5) 

11 I< b,. 
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Assuming the load is applied only to the inclusion, we write the right-hand side of (2.1) in 
the form 

a=ak= na-‘k, f3 = p1 = JcbA 

which results in the following expression for the function satisfying (2.1) and (2.2) in terms 
of the unknown functions &(E), q*(q): 

Here and henceforth the prime on the summation sign means that summation is taken over 
all positive odd values of the variable mentioned. 

Conditions (2.4) are satisfied because of the oddness of wX' in x and wy' in y and the 
uniform convergence of the series for w,'and WY' while conditions (2.3) result in a system of 
two integral equations in ql(&) and $,r (q) (a = ba-I): 

We execute the following three transformations in system (2.6): 
a) we make a change of variables and functions t = fit, y = c,t, E = c(T, q = qT+ 91 W = J=lOl (Eh 

‘Pa CT) = =I% (11). we introduce the notation e= ca-I, I= &-.I, y= yk=nekl% and we take account 
of the evenness of cpI(r) and T,(T); 

b) we sum the inner series by means of the formula 

’ co9 (is) 
(i’ = & ((I+ 4 e- + P (4 ch (~4 -v (4 $0 sh (4) j 

y(a)=thp-I--_sech*p, v(a)=thp-1, p=na:2 

resulting from formula 5.4.5.11-12 /la/; 
c) we convert the slowly convergingpartofthe outer series by using the formulas 

(r-r)llnIt-rI+(t+T)‘InIt+TI+ 
k 

(2.7) 
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where /18/ 

A, = 8’ k-3 z 1.0518, 
k 

Formulas (2.7) are derived in the same way 
Consequently, the transformed system (2.6) 

conditions (1.10) 

TS = x (- l)‘JP 

I(=1 

as (1.5) /17/. 
is written in a form ensuring satisfaction of 

c, 1 ‘pJ@jdz =T 
DWo $.&a (2.8) 

i = 1, 2; A1 = 1, h, = I; L,, (t, .c) = L,, (t, z) = (t" + 
2%) In (P + 7") 

L,, (t, z) = L,, (t, z)= (t - z)Z In I t - z I + (t + z)” In (t+z) 

K*,(h r) =f (Fi”[ (2 In g -3) (P + 9) + 2(f - b*,)?] + 

.,2~~-.,,.z~(,)a~(2~-3)~~,,,~~ 2: 

(2.9) 

& Ihii + (I - 6fJ) (- I)‘( 1 - Z/C)] + 

“‘.p@- I)‘(+,.&) x 

[& (+k)(1-28iJ)L- ~(~k)(1-g,J)21)(~)2’~] 1 

u,=l. $=O 

where expansions of the functions cos, cash, sinh in power series are used in the last sum 
with respect to k. 

System (2.8) is solved differently for identical (Ir = 1) and different (A# 1) lengths 
of the inclusion branches. 

3. Inclusion branches of identical length @=I). To reduce system (2.8) to 
the form (1.12) we make the change of functions %,a = 'PI0 f %iO and form a new system of 
equations by taking the sum and difference of (2.8). We consequently obtain 

(T)'S L.(t,r)'P=.(r)d~+~S~=~(~,~)rPBO(~)d~= (3.1) 

2n40DfVo 6 
B=1 0 

y$- la 

(0 < t Q I), a = 1, 2; L, = L,, - (-l)a_L,,, 

Mab = $J 3 (_ 1 )(i+l)(a+l)+(j+l)(8+1)KII 
i=l j=1 

The kernels &(t,%) have mobile singularities (for 
t = z= 0) and are symmetric. 

t = T) and fixed singularities (for 
Taking their evenness in t into account as well as the fact 

that L, (0. z) = 0, we consider instead of (1.13) the equations 

1 

&j La(tt7)%4,(T)dr= @(;~~;z2,, = pan(t) 43.2) 

(0; t < I), n = 0, 1, 2, . ..;a=l,2 

We differentiate them thrice with respect to t to reduce them to the form (1.17) 

5 0 

@+caH 
Na f Wr)~= (Z(n+a)_-_5), =fan(t) (O<t<l) 

A=(,) =N,I (Y) - (- ~)=N,,(Y) 

(3.3) 

MY)=WY)=+(& f -&), 
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M~)=WY)=~($& - &) (e’ + 1)’ 

In general, not every solution E&,(T) of (3.3) will be a solution of (3.2) since it 
can yield a function different from pan (t) by an even polynomial of second degree in d(t) 
on substituting into the left-hand side of (3.2) (d(t) = d, + d,t2 for a=l 
d,te for a = 2). 

and d (t) = 
The polynomial d(t) vanishes if the conditions 

(3.4) 

Pin (0) 
are imposed on 9,,(z). 

To satisfy them we seek the solution of (3.3) containing 3 - a arbitrary constants. We 
will solve (3.3) by the factorization method /l/ using a Mellin transform for which we write 
(3.3) in the form (qan(t) is an unknown function) 

AmlYing 
obtain 

5 ( ) N f e_(&=f_(t)+f+(t) &‘<t<-‘) (3.5) 
0 

II e-(t), f-(t)lf+(t) II = ( 

II~,,(w,,(+OII (O=zt< 1) 
,, o, o, $an(t) ll (l<t<m) 

the Mellin transformation to (3.5) and taking account of the formula in /18/ we 

G(p) @L(P)=F-(P) + F+(P), 

P (p)=[(p + 2(n+a)- 5)(2(s + a)- 5W 
II Ga (p), @iin (p), F- (P), F+(P) II = 

j II N,(t), 9_(t),f_(% f+(t) II tp-ldt 

Gx”@) = T (P)&z (P) 
T (p) = tg Vanp, K, (p) = 1 - (-l)a (2 - p)lsin ‘i,np 

(3.6) 

(3.7) 

(3.8) 

The functions @LB (P)? F- (P) are regular in D- = {p: max(-I, Rey)< Rep}, Y is 
determined by the asymptotic form 9,,(z) = O(V) as x-+0. 
in D+ = {p: Rep < 1). 

The function P(p) is regular 
The equality (3.6) is satisfied in the strip Q = {p: max (-1, Re y) < 

Rep < 1). Using standard reasoning /l/, we obtain the solution of problem (3.6) containing 
3 - a arbitrary constants in the form 

cp&, (p) = (A,(p) + F- (P) IG,+ (5 - 2 (s + aW) IGa- (PN-’ 

4 (P) = a, + a,~, A, (P) = =a 

Ga* (p) = T* (P) &* (P); T-(P) =s 9 

(3.9) 

T+ (PI = I- (‘la - VOP) 
r (1 - 'lap) ’ K,-(P) = s 

a 

IL+ (P) = exp 
(Rep<3 wdq) (~~r:~~:K,(p) (Rep>2) 

where L is the contour of Re q = 2. The selection of L instead of the contour L, with ReqE 
(0, 1) is because Ind Kar = 0 on L while Ind K, = -1 on L,. The presence of the zero for 
K*(P) for p = 1 is taken into account by the factor (p - 1). As p + 00 Garf (p) = 0 (~*"+a), 
CPZ" (P) = 0 (p”9. The growth of U&,(p) as p-+00 is allowed when using the Mellin trans- 
form of generalized functions /19/ and indicates the presence of non-integrable singularities 
for the functions $,(r) as Z+ 1 - 0: ean(q = O((1 -z)-Q) (similar to /2, 14-17/J. The 
behaviour of &,,(Z) as z-+ +0 is determined by the zeros of the function G, (P) (see 
(1.22)) and agrees with the behaviour of the transverse forces at the vertices of a clamped 
quadrant /20/. 

To find a,,u~,al, we use the fact that on the basis of (3.7) conditions (3.4) arecarried 
over to the function @L,,(p) in the following form 
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h? P&n (PL = P1n (0) (3.fO) 

2 (3 - 4n-l (@GA Q -t (2 - dv-L (P))‘),, = P6n (0) 
(a = 1, 2) 

Substituting (3.9) into (3.10) and taking account of the known relationships c/21/ 
formula 1.7(l) and /18/, p.7741, we obtain a system of linear algebraic equations in a,, a,, a, 
which completes the construction of the functions @an (z) 

(3.11) 

i = 0, 1; P = 3 - 2i, r = (2 - if-', Qa- (p) = F- (p) x 

[G,+ (5 - 2 (m + a))]-' 

40 = K,- (pi 
Kl-' (P) _L__(-__ 
KI- (P) dil’P% +& 

Using the constructed &(Z), the approximate solution of 
formulas (1.13). 

It should be noted that the construction of the functions 
the solution of the problem of the bending of an infinite plate 
(pa,,(t) yield deflections on the inclusions). The solution of 
the more general results of /?.2/, but it is obtained there in a 
realization of the scheme elucidated in Sect-l. 

A relationship between the inclusion WO and the amount of 

system (3.1) is found from 

&,(r) can be considered as 
with a cruciform inclusion 
this problem is contained in 
form less convenient for 

force applied to the inclusion 

d 

ia 

(3.12) 

is constructed from the results of the calculation. 
The values of P for N= 2 and N= 3 are practically 

in agreement, which confirms the efficiency of the method 
5 proposed. The displacement of the inclusion was represented 

in the form 
W, = io-%PoW+ (3.13) 

where the coefficient a =a(e,o,?J characterizes the stiff- 
ness of the plate-inclusion system. The values of a found 
at this section (for h=i) are presented as solid lines in 

0 a.5 the figure. We show for comparison, as dashed lines, the 
results for a linear inclusion located along the z axis, 
which corresponds to R= 0 (see /2, 15/j. As might have 
been expected, the cruciform inclusion is at a lower value. 

This decrease is especially noticeable for a plate stretched along the f axis (o= 0.5). as 
well as for a square plate (u= 1) for large inclusion dimensions (e>,0.8). In the case of a 
plate stretched along the y axis (a= 2) the influence of the second branch of the inclusion 
is unimportant. 

4. Inclusion branches of different length (k+i). To be specific we consider 
b< 1 (the x axis is directed along the long branch of the cross). System (2.8) is not 
reduced successfully to the form (1.12) ; consequently we will use (1.15) and (1.16). Let us 
construct the systems of solutions II 616n (r), %6n (4 of the characteristic system of equations 
with polynomials on the right-hand side 

(4.1) 

n = 0, 1, 2, * . ., @ = 1.2, the right-hand sides of the form II A + p (f), A II, B = 2 - II 0, P (Gil 
;;r;pond to the value p = 1. It is here taken into account that the condition P15n (0) = 

results from the behaviour of L,,(~,T) as 
thli?n evenness of pie*(t) follows from the evenness of 

t-to. Also taking into account that 
Li, (t, 2) , we take the following 
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polynomials as pien( 

Differentiating (4.1) thrice with respect to t, we obtain (see (3.3)) 

In order for the solution of the system (4.3) to be the solution of system (4.1) 
should satisfy conditions analogous to (3.4) 

We rewrite system (4.3) in the form ($JSn @) is an unknown function) 

Introducing the notation for the Mellin transform 

(4.2) 

(4.31 

it 

(4.4) 

(4.5) 

(4.6) 

and applying the Mellin transform to system (4.5), we obtain a Riemann matrix problem (the 
domains of regularity D* and the function T(p) are the same as in (3.6)-(3.8)): 

-411 (P)%- (PI + A,% (PP@@, (P) = F,_(P) I- F1+ (P) (4.7) 

A,, (~1 @I- (~1 + Aso W &‘%A- @I = hpp, (~1 -t- A’.,+ (~1 (4.81 

A,, W = A,, (~1 = 2’ (~9, An (PI = 4, (~1 = R (PI (4.9) 
F,-(p) = 8J5hp5)-5 [(p + 2 (n + B) - 5)(2 (n + B) - 5)11-l es 

Gn@) 

rJt (i) 

We will assume the presence of power-law singularities for the functions eJ_(t) and 
as t+liJ- Then by theorems of Abelian type, their Melfin transforms Q, (P)(FJ' (Pl) 

have a power-law behaviour as p+ m,p EL)-@?+). The purpose of the subsequent constructions 
is the transformation of (4.7) and (4.8) to the form 

C*+ (P) = C,-(p) (i = 17 2)~ Ci* (p) = O(pNi) as Ipl-zm (4.10) 

~FD* 

which affords the possiblity of applying Liouville's theorem. 
We carry out the required transformation by replacing the specific functions (4.9) by 

arbitrary functions A,J&) for generality, and assume here that 
1) the functions Alll(p)/A,l(p) (A,l(p)/A,I(p)) have only.poles of multiplicity one p,,,-(pn+), 

m = 1,2,3,... , respectively, as singular points in D-(D+) and behave as 
I p I + w, p E D, (DJ,. & = {p E D’, inf 1 p - ~$1 = e, > 0); 

O(p'l) for 

2) the factors As(p), 6%(p) behave as 0 (PP’) for Ip I-+00, PED* for the 
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factorization 
3) Rep: 
4) R,r= 

-41, (P) = AA (PM, (P) and G (P) = A,, (P) - A,, (pM,t (PM, (p) = G+ (p)G- (p) i 
=O(m=), a>l, m-+w; 

Res (AIW (PYA~, (~1) = 0 W), m--f 00. 
P=P$ 

(4.13) 

For generality we write the functions Fib(P) in the form Fi- (p) = b, (p - at)-', ai ED+. 
Since as 1 p I+ 00, p E D+ the function h*--t 00 more rapidly than any power of p, and 

components A,,(p)@,,-(p) and hPF2+(p) are simultaneously present in (4.8), then the reduction 
of (4.8) separately to the form (4.10) with the required asymptotic form is not possible. 
Consequently, we replace the equality (4.8) by the linear combination --h-PA,,(p)lA,,(p) (4.7) + 

i.-p (4.8): 

G (p) @; (p) = - A-P “’ (P) All(p) vl- (P) + Fl+ (PN + (Pa-(P) + F,+ 04) (4.11) 

We rewrite the equalities (4.7) and (4.11) in the form 

F1-(;)$(;;+(p) = A,,-(p) DI- (p) + a+$$ AI,-(P) @,- (P) (4.12) 

Fx- (P) + FI+ (14 _ h-P Ati (P) VI- (P) + FI+ (PII 

G+ (P) 41 (P) G+ (P) 
= G- (P) @,- (P) 

and introduce the following functions intotheconsideration 

Yr+(p)=i+-. Am- = hn-A,,- (P,-) %- (P,-) 
n&=1 

y, (& = _ 2 ~-p”+‘?n+ A + =R + FI- (P,,,‘) + FI+ (P,,,‘) 

m=lP-_P,+ In m c+ (Pm+) 

whose subtraction from the corresponding components with the factors li*p in (4.12) cancels 
the poles p,$ existing there. The series \Y,+(p)('#'Y;(p)) here converge uniformly in the 
domains D, (&), respectively, and behave 
The numbers Af 

as O@-r) as IPI+~,PE~UD+ (PED,UW. 
are still unknown since they are expressed in terms of the unknown functions 

a,- (P) and FI+ (P). 
Taking account of the presence of the poles in D+ in (4.12), that are givenbythe func- 

tions F,-(p), we introduce the notation 

Q<(p)=$#v QL(P)=~&$-FF~(P)&~ (4.14) 

Using the functions (4.13) and (4.14) we rewrite (4.12) in a form corresponding to (4.10): 

C 
1 
+(p) 3 FI-(P) + FI+ (P) 

AlI+ (P) 
-Q;(P)--I+(P)= 

4i (P) @D; (P) i- 3.’ $# A,; (P) ‘=‘)a- (P) - QI- (P) - 

VI+(P) = CI- (P) 

CP+ (P) = 
Fs- (P) + F:+ (P) _ A_p u VI- (P) + 4+ W _ 

G+ (P) 41 (P) G+ (P) 

Qa- (P) - vu; (P) = G-(P) ‘h- (P) - Qs- (P) - ‘J’S_ (P) = CP- (P) 

(4.15) 

The functions C,(p) mapped by the functions ci* (P) in Df, are entire and under the 
assumptions made regarding C,(p) satisfytheinequalities 

IC1 (P)l < BilP IX:. 
Ait for sufficiently l,arge p the 

According to Liouville's theorem Cr(p)zP,(p) is equal to a polynomial 
of degree x,. It is important to emphasize that since lLp-+O as fP I -00, LED-, the component 
with factor hp present in C,-(p) does not prevent satisfaction of the inequality mentioned. 
Moreover, since C, (P) is a polynomial, there are no components of the type 0 (iSpm), in the 
asymptotic form C,-(p), which can be explained by the presence of the asymptotic form 
O(p’l) -I- O(App”*) for the desired function @I- (P) and the mutual reduction of terms of the 
asymptotic form O(1Ppa) in the first two components in C,-(p). All the above also refers to 
the component with the factor L--P in C,:(p). Substituting PM, (P) into (4.15) we obtain 

Fr+ (P) = - FI- (P) + Au+ (P) (Qi (P) i- 
c 
II $g$- + P,(P)) 

m*- (P) = c- @) L (Q;(P)-~~+J’x,(p)) 
I=, 

(4.16) 
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Substituting (4.16) into the expression 
system of linear algebraic equations in A,T 

for A,,,r in (4.13), we arrive at an infinite 

(4.17) 

If we determine the polynomials PNj (Pf in some manner, then by solving system (4.17) 
(generally approximately), and substituting A,* into (4.16), we find one of the solutions 
of problem (4.7), (4.8). For Pxi(p)= 0 we obtain a particular solution of the inhomogeneous 
problem. If we take Qi-(p)= 0 and select P%,(p) = pL (k = 0, 1, . .., XI), Px,(p)r 0 of Px,(p) = 
0, P,, (p) = pk (k = 0, 1, , . ., x,), then we obtain a set x1 -i-x, + 2 of solutions of the homogenous 
problem. As usual in the factorization method, the specific values of x1 and xg are 
determined either by giving the behaviour of the solution &ilen(r) of the initial equations 
as r-+hf - 0 (and thereby giving the behaviour of (o,-(p) as /p j-.+00) by virtue of (4.6) 
and a theorem of Abelian type) or by the number of constants to satisfy some additional con- 
ditions. Three constants are required to satisfy conditions (4.4) in the case being considered 
here. Consequently, we take x1 = 1, ~2 = 0, I’,, (p) = ~0 i- alp, Px; (P) L= ~2 (other modifications 
of the selection of xi that yield three arbitrary constants will result in divergence of the 
energy integral of a bent plate, see /17, 23/). 

If -&J(p) and Pi-(p) are given by (4.9), we obtain 

G(P)=; T(P), K (P) K(P)= 1 -(p -2)Ysin* */,rcp, cf@)= T*(p)@(p) 

The expressions for T*(p) and Kf (p) are given by (3.9) with K,(p) replaced by K (P)* 
Formulas (4.13), (4.14), (4.16) and (4.17) take the form 

A +=-- “, (- l)m m Fl- t2 -2m) + Fs+ (2 -2m) 
m G+(2-22~1) 

Fi- (P) 
c%-(P) = f’(3_&) * a-(P) = 

Fa- (PI h”(P) (f - 2s) (- 0” 
G+ (3 - Zn) 

-- 
ka-m G+ (3 - 2n) 

(4.18) 

R .+. 4m(-V 
II) Mf(2F2m) 

O” x @+“A - 

Am+ - Km’ 
1 

---X,+(Qi-(2-22m)fao+(2-22nr)a1) 
1x1 2(=+4 - 

The infinite system (4.18) was solved by a reduction method for fixed a; and the truncated 
system by a simple iteration method. From 10 equations for b- 0.2 to 100 equations for 5= 
0.95 were kept. 

Note that the construction carried out are conceptually close to that used in /24/. 
Let us determine the q by using conditions (4.4). To do this we execute a number of 

transformations. On the basis of (4.6) conditions (4.4) are carried over to the function 
@t-M in the following form (their sum and difference are taken in place of the last two 
equations in (4.4)): 

rr”’ (@l-(P) f hPW (p))’ p-s = PlfJO) (4.19) 

2 (3 - 1) n-1 ((2 - i) (W(P) f )iP@*- (PI)’ + m- (P) f Apa- (PN)p-1 = p;&& (0) f P;gn (0) (f = i, 2) 



222 

1n conformity with the structure of the right-hand sides in (4.18), the numbers A$ 

depend linearly on ai and the functions (4.13) can be written to the following form 

ur&((P) = Y& (P,@Ot %,Q) = Ip& (p,O,O,O) + (4.20) 

a*uf&(J% i,o, 0) $"1P&(P,O, 1, 0) -i_ a,V&fi!p,O,0,1) 

An analogous representation can be written for the functions (4.16), and taking (4.7) 
and (4.8) into account for the functions 

ah- (p) f a%*- (p) = =I= (1 T*) A%*- (p) + F1- @;tpf;i @) (4.21) 

Substituting (4.211 into (4.19), we arrive at a system of three linear algebraic equations 
in Oi. Furthermore, the values of ai are substituted into (4.18), and A$ into (4.16), (4.7) 
and (4.8). Finally, we find the transforms hjcDj-(p) of the functions OjBn CT) are solutions 
of system (4.1). The behaviour of the functions ej@ CT) aS T-$-O and 7-hj-0 is the same 
as for the functions e,,(t) in Sect.3. Using the constructed ejBn(Z)r we find the approximate 
solution of system (2.8) from (1.15) and (1.16). 

As in Sect.3. the coefficient OL in (3.13) is calculated from the results where 

(4.22) 

The values of P for N=2 and .v = 3 are practically in agreement. 
For h<i the case e<f is of greatest interest. The corresponding values of a for 

s= 0.5 and I= 0.5 are presented as dash-dot lines in the left lower part of the figure. As 
might have been expected, the curve obtained lies in a domain bounded by the two limit curves 
a=0 and h= 1. For a square plate (U= 1) the influence of the second branch of the inclusion 
is noticeable only for h close to one (the appropriate dependence for h=0.9 is shown in the 
figure by dash-dots). In the case s;;_2 the influence of the second branch is unimportant 
and the appropriate results differ slightly from those presented in Sect.3. As in /2, 15/, 
for e=O the values of a yield known values of the deflection under a concentrated force 
applied at the centre of a plate. 

The author is grateful to G.Ya. Popov for discussing the research. 
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THE PRESSURE OF A SYSTEM OF STAMPS ON AN ELASTIC HALF-PLANE UNDER 
GENERAL CONDITIONS OF CONTACT ADHESION AND SLIP* 

E.L. NAKHMEIN and B.M. NULLER 

The contact interaction of an elastic half-plane and an arbitrary system 
of coupled and partially or completely detached stamps is considered. 
The problem is reduced to a combined Dirichl‘et-Riemann boundary value 
problem /l/ and is solved by quadratures. New modifications of the method 
and problems occurring in tasks with two and more slip sections are 
discussed; analogous problems with one slip section were studied earlier 
/2/. Fal'kovich's problem /3/ is investigated in a broadened formulation 
as an illustration. 

1. Let L, = (ak,bg>, k = I,&..., 1 be an open, half-open, or closed interval and Mk = 
[pkr 4. k = 1, 2, . . ., m, segments of the real axis y=o on which the stamps have, respect- 
ively, slipping contact and total adhesion with the elastic half-plane --00<2<w,y~0; 
n,<b,<. . . < bt, PI< Ql< . . . < qrn. We determine the shape of the stamps, the tangential 
clearance on M,, the separation-free abutment and non-intersection of the stamp and the half- 
plane by the boundary conditions 

u'=t+,'(z), XEIWM; v‘=v~'(x), XELU M; (1.1) 

7XY = 70 (x), 2 E L; U” = 7,” = 0, x E s; L n M = 0 
U” < 0, 5 c L; v (2) - v. (z) > 0, 5 E S’ 

Here S is the complement LljM to the real axis, S' are the selections outside 
L U M. on which the stamp base with the shape Vo(X) is not contiguous to the half-plane; 
the given functions satisfy the HBlder condition; the interval L1, = [at,bk] (L, = (air, bk)) is 

l Prikl.Matem.Mekhan.,52,2,284-293,1988 


